Using DUND:I with a Cluster of Asterisk Servers!

General Description and Scope

DUNDI™ is a peer-to-peer system for locating Inttrgateways to telephony services.
Unlike traditional centralized services (such asrémarkably simple and concise
ENUM standard), DUNDiI is fully-distributed with no cealized authority whatsoever.

Clustering Asterisk gives us the ability to distrié the load of PBX/Soft Switch
functions across a lot of Asterisk servers in awam infrastructure. This allows the
cluster to look and feel like one huge soft switdinis can also give the soft switch
function built in failover protection and high aladility for the SIP Agents.

Put DUNDI and an Asterisk Cluster together and lyave the foundation of a core VoIP
switching network that is scalable without the nésdstatically addressing SIP peers to
a specific registration server then scripting stdtal-plan routes to those registration
servers. Dynamic peer location and immediate abigahe goal.

This serves a couple of fundamental needs whegmiagi and building an IP Telephony
network.
1. We design in an environment that is self healingssthe core soft switch.
2. We design architecture with scalability and growtimind, organic growth so
incremental equipment costs are low.

Voice and

Reaqistration Registration Registration Registration Registration

Server 1 Server 2 Server 3 Server 4 Servar §
B B B B B
B | - e ey | -]

DUNDI&

Metwork

Database
Traffic
Metwork

%

My SQL
RealTime
Database

Tables:

Sip user/paer
Extensions (dialplan)

Woicemail

DUNDi Lookup
Server

Peers with
TTi=1 with all
Registration
Servers

WVoiceMail
Server

Figure 1 Asterisk Cluster
Functional Requirements

We have to address several individual needs teaetdynamic peer location and a
method of contacting them directly or indirectlyrichg a PBX failure.

To accomplish dynamic peer location across thee@luge will first implement a method
whereby an individual PBX is aware when a spe@lié Agent peer has an active
registration on itself. When a SIP Agent registeith a PBX, it is the duty of the local
PBX to let the other PBX’s know where this SIP agsrand how it can be contacted.

We also need the ability for the cluster to shaceramon pool of SIP Agent registration
information. This will be accomplished through th&terisk RealTime Architecture

using sip users/peer information pulled from a My S0atabase. This database will be a
stand-alone server for the purpose of this paptecduld also be a cluster of serversin a
high availability or load balanced arrangement.

Having a common database where all servers puiahee information eliminates the
need to provision each SIP registration servelnénduster.

For Dynamic Peer Awareness We Use “regcontext” inig.conf
regcontext=<context>
If regcontext is specified, Asterisk will dynamilyatreate and destroy a NoOp priority 1

extension for a given peer who registers with gr@ex. If the context is not specified in
extensions.conf, then it will be dynamically crehtenen a sip agent registers.

Example:
In the [general] section of sip.conf:

[general]
regcontext=sipregistration

Once the phones, in this example 1001 and 1006tezgvith REGPBX1, a context of
[sipregistration] appears and the “show dialplaofenand at the asterisk CLI> will
produce:

REGPBX1*CLI> show dialplan

[Context 'sipregistration’ created by 'SIP']
'1001' => 1. Noop(1001) [SIP]
'1006' => 1. Noop(1006) [SIP]

This gives this PBX a dedicated context that wercap DUNDI lookup request to.
When a DUNDI lookup requests location information éxtension 1001, this PBX will
reply, “Yes, the extension is active here and ighibe contact address”. When a DUNDiI
lookup requests location information for extensli®®2, this PBX will reply, “No, that
extension is not active here”.

We do not insert a [sipregistration] context in é@xéensions.conf file because there is no
need. The PBX dynamically creates the contexténdialplan as soon as 1 sip agent
registers.

As we insert regcontext=sipregistration in thepf file in each registration server, we
begin to see how the cluster, with DUND:I lookupguitively knows where SIP Agents
are registered.

DUND:I Lookup Server

With a server in the cluster dedicated to procesBIINDI lookup requests, we
eliminate 2 headaches associated with scaling eowitly of the core soft switch
function.

1. When adding a new registration or PSTN gatewayesdovthe cluster, we
just need to insert the new peer information toDENDI lookup server
instead of adding the new peers to all the redistiaervers and PSTN
gateway servers. With a handful of servers, nathmaf a big deal, but with
50 or more servers, now you have a maintenancd #watrncould span several
hours or over the course of several evenings.

2. As we bring on more trunk access between other etsrkay you are turning
up a Dedicated T1 to Lake Charles, LA; you justehevmake a
route/translation in the DUNDI lookup server insted across all of the
registration servers.

DUND:I Configuration:

First we have to setup a channel for internal DUNDialk across and also a channel to
pass calls between the PBX’s

In this example we will use IAX2. Now there arenyiavays to set this up and quite a
few parameters we could specify for security betwaéethe registration servers and
DUND:I lookup server, each having its own contexegusers relationships and security
keys or passwords. Because this is a clustereqteat from the outside world and only
used to route calls and DUNDiI request internallgt use a simple context in iax.conf
that is common to all the servers.

Example in iax.conf:

[priv]
type=friend

dbsecret=dundi/secret
context=incomingdundi

Add this context to each server. That'’s it, dongan WAX2 setup. Now all the PBX’s
have a channel to exchange DUNDI lookup requegireses and also a channel to direct
calls across within the cluster.

dundi.conf

In the [mappings] section, this is where we spewifiat [context] in extensions.conf we
want to allow DUNDiI request access to. This is hibe/cluster sees any available SIP
Agents in the [sipregistration] context on this PBX

[mappings]
priv => sipregistration,0,IAX2,priv:${SECRET}@10.110.121/${NUMBER},nopartial

When a DUNDI lookup request comes to this regplsterisk will report back
whatever SIP Agents appear in the context [siptedien]. If the request is for an
extension not listed in context [sipregistratiahjs PBX will reply to the DUND:i lookup
with “not found”

How to configure DUNDiI to work in an Asterisk Cluster

We have 5 registration servers we call regpbxIplegd, regpbx3, regpbx4 & regpbx5.
SIP Agent information in pulled dynamically fromMySQL database using the Asterisk
RealTime engine. When a sip agent attempts tetergio a registration server, Asterisk
looks for the agent’s information in the MySQL dazdae, if present; the agent is allowed
to register.

We have 1 Asterisk PBX setup to process DUND:I Igokeguest and pass calls from the
PSTN Gateways to the SIP registration cluster, alietlnsis server dunpbxl1. This PBX is
DUND:I peering with all 5 registration servers. Alregistration servers only peer with
this DUNDI lookup server, dunpbx1.

Each registration server is configured as suchuimddconf:
Regpbx1 dundi.conf

[general]

department=dept
organization=company
locality=city

stateprov=state

country=US
email=engineer@company.com
phone=contact phone number

;bindaddr=0.0.0.0

;port=4520

entityid=02:03:AF:B7:FF:37 (this defaults to thesfiNIC MAC address, but it's a good
idea to specify it)

*kkkkkkkkkkkkkkkkkhkkkhkkhhkkkkhhhkkkhkhhhkkhkhhhkkhkkhhhkkhkhikkkkx *kkkkkkkkkkkkkkkkkkk
cachetime=5

(we reduce the cachetime to 5 seconds, this allousto perform a DUNDi lookup
request every time we dial. If a registration sergr should fail, and this value is set
to the default, 1 hour, it will take up to an hourbefore the extensions that were
registered to this registration server are known edlewhere in the cluster even if they
re-register to another registration server.)
kkkkkkkkkkkkkkkkkkkkkkkhhkkkkkkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkkk

ttl=2

(we don’'t want to lookup past any local registration server so limit the hops to 2.
[see diagram DUNDi Hop Count])

kkkkkkkkkkkkkkkkkkkkkkkhhkkkkkkkkkhkkkkkkkkkhkkkkkkkkk kkkkkkkkkkkkkkkkkkkk
autokill=yes

;secretpath=dundi

;storehistory=yes

kkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkhkkhkkhkkkkkkkkkkkhkkhkk kkkkkkkkkkkkkkkkkhkkhkk

[mappings]

priv => sipregistration,0,IAX2,priv:${SECRET}@10.110.121/${NUMBER},nopartial
(when a [priv] dundi lookup request comes in, thi$?BX will advertise whatever
extensions are present in the [sipregistration] cdext in the dialplan and if the exten
exists here, the PBX will send back the contact inf[lAX2/priv:${SECRET}@the ip
address of this server/the extension number request)

kkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkhkkkkhkkhkkkkkkkkkkkhkkkkk kkkkkkkkkkkkkkkkkkkhkk

This is the peer section, who this PBX peers with:

[00:14:22:23:26:2E];(this is the MAC address of the DUNDiI server dunpk1)
model = symmetric

host = 10.10.10.12((this is the IP address of the DUNDI lookup servedunpbxl)
inkey = dundi

outkey = dundi

include = priv

permit = priv

qualify = yes

order = primary

Note: | use the same inkey/outkey for regpbx1, 2, & dnd dunpbx1. Since all

DUND:I lookups stay within this cluster, provisiogii set of keys and sharing across the
cluster is much easier than keeping track of #osetach server. This also helps when
adding new servers to the cluster.

| copy the above dundi.conf config file to the athegistration servers and modify the
server specific entries:

entityid=02:03:AF:B7:FF:3Tthis is server specific, per PBX)

[mappings]
priv => sipregistration,0,IAX2,priv:${SECRET}@10.110.122/${NUMBER},nopartial
(ip address is server specific, per PBX)

The DUNDI lookup server, dunpbxl, has a peeringiaeavith all 5 registration servers
as such:

[01:31:AF:E7:FF:37}(regpbx1 entityid (MAC address))
model = symmetric

host = 10.10.10.12(tegpbx1 IP Address)

inkey = dundi

outkey = dundi

include = priv

permit = priv

qualify = yes

order = primary

[03:11:AA:02:B3:1D];(regpbx2 entityid (MAC address))
model = symmetric

host = 10.10.10.12Zregpbx2 IP Address)

inkey = dundi

outkey = dundi

include = priv

permit = priv

qualify = yes

order = primary

[05:31:AD:18:53:0B];(regpbx3 entityid (MAC address))
model = symmetric

host = 10.10.10.123(regpbx3 IP Address)

inkey = dundi

outkey = dundi

include = priv

permit = priv

qualify = yes

order = primary

[01:19:4A:52:B3:1D];(regpbx4 entityid (MAC address))
model = symmetric

host = 10.10.10.124regpbx4 IP Address)

inkey = dundi

outkey = dundi
include = priv
permit = priv
qualify = yes
order = primary

[02:7A:AE:43:52:0C];(regpbx5 entityid (MAC address))
model = symmetric

host = 10.10.10.12%(regpbx5 IP Address)

inkey = dundi

outkey = dundi

include = priv

permit = priv

qualify = yes

order = primary

Use the “dundi show peers” command at the astelisk see connection state with the
peers identified in dundi.conf:

dunpbx1*CLI> dundi show peers

EID Host Model AvgTime Status
01:31:afe7:f:37 10.10.10.121 (S) Symmetdoavail OK (1 ms)
03:11:aa:02:b3:1d 10.10.10.122 (S) Symmeéth@avail OK (1 ms)
05:31:ad:18:53:0b 10.10.10.123 (S) Symmettavail OK (1 ms)
01:19:4a:52:b3:1d 10.10.10.124 (S) Symmetiavail OK (1 ms)
02:7a:ae:43:52:0c 10.10.10.125 (S) Symmédthmavail OK (1 ms)
5 dundi peers [5 online, 0 offline, 0 unmonitored]

astl*CLI>

With these 5 PBX peers listed as such, when a DUNGXup request comes from
regpbx1, this PBX will request extension locatinformation from regpbx2, 3, 4 & 5. If
a DUND:I lookup request comes from regpbx3, this R&Krequest extension location
information from regpbx1, 2, 4 & 5.

The TTL value in this arrangement is important éefx low. The DUNDI lookup server

is restricted to only 1 hop, TTL=1, so requestsidbpropagate past the registration
servers. The registration servers are restrict&liops, TTL=2, for the same reason, but
if they were only set to 1, the DUNDiI lookup requesuld not get past the DUNDI
lookup server. See figure 2, DUNDi Hop Diagram.

Registration Registration Registration Registration Registration
Server 1 Server 2 Server 3 Server 4 Server 5

TH
-5

DUNDi
Lookup
Request
Serv has

Voice and il

DLUNDI Metwork

Database

Traffic Network DUNDS Hop 2

DUNDI

Lookup
Reguest
from
DUNDiI
Serv has
TTL=1
MySaL DUNDI Lookup Server
RealTime VolceMail Sarver
Databasae Peers with TTL=1 with
all Registration
Tables: Servers
Sip user/peer
Extensions (dialplan)
WVoicemail
Figure 2

DUNDI Hop Diagram

Dial Plan Routing, Efficiency First

So now that we have dynamic SIP Agent location an@ss within the cluster, just how
do we route calls within the cluster, what doesdia plan look like?

Let us look at a few examples:

Example 1: SIP Agent who calls another SIP Agent who happer® registered to the
same registration server.

In this example, extension 1001 calls 1006. Wegarrg to look internally for the
extension and if present, we will follow standaBMXfunction, and connect the call.

In extension.conf, here is the dialplan logic usederform an internal lookup:

[lookuplocal]

exten => _XXXX,1,ChanlsAvail(SIP/${EXTEN}&IAX2/${EXTEN}|s])
exten => XXXX,2,Goto(incoming|${EXTEN}|2)

exten => _XXXX,3,Hangup

exten => XXXX,102,Goto(lookupdundi|${EXTEN}|1)

exten => _XXXX,103,Hangup

We check to see is the extension we dialed, 1@80évailable on the local PBX using the
“ChanlsAvail” command. Then depending on the clehawailability, we send the call
to the [incoming] context to look for extension BQfriority 2 or we send the call to the
[lookupdundi] context priority 1.

Here is a snippet from the Asterisk CLI>

regpbx1*CLI>
-- Executing Goto("SIP/1001-6¢c54", "lookupldd®06|1")
-- Goto (lookuplocal,1006,1)
-- Executing ChanlsAvail("SIP/1001-6c54", "SIPD6&IAX2/1006]s)") in new stack
-- Executing Goto("SIP/1001-6¢c54", "incomind)B(R") in new stack
-- Goto (incoming,1006,2)
-- Executing Answer("SIP/1001-6¢54", ")
-- Executing Dial("SIP/1001-6¢54", "Sip/100620
-- Called 1006
-- SIP/1006-88c4 is ringing
-- SIP/1006-88c4 is ringing
-- SIP/1006-88c4 answered SIP/1001-6¢c54
== Spawn extension (incoming, 1006, 3) exited-nero on 'SIP/1001-6¢c54"
regpbx1*CLI>

Example 2: SIP Agent who calls another SIP Agent who issiged on another
registration server.

In this example, extension 1001 calls 1002. Wegarrg to look internally for the
extension and if present, we will follow standaBMXfunction, and connect the call. But
if the extension is not present we will perform @NDi lookup within the cluster and
connect the call to the appropriate server thaelésnsion 1002 registered.

In extension.conf, here is the dialplan logic usederform a DUND:i lookup:
[lookupdundi]

exten => X,1,Goto(${ARG1},1)
switch => DUNDI/priv

exten => i,1,Goto(lookupmysql,${INVALID_EXTEN},1)

The ${ARG1} variable is the extension from the pgoas [lookuplocal] context, in this
example it is 1002. We are using the switch staterto tell DUNDiI to look for
extension 1002 in the “priv’ mapping on the recegvDUNDI peers. Recall that all the
registration servers have the [sipregistrationjteenmapped to “priv” in their dundi.conf
files. So when this request for extension 100Zgné to the local peer, which is
dunpbx1, the request hits the DUNDI lookup servet ®rwards the request to the
remaining registration servers in the cluster.

Registration server 2 responds to the DUNDi loogegver with connection information,
and this is passed back to registration severcbimoect the call.

If the DUND:I lookup returns “extension not foundhjs will be considered an invalid
extension within this [lookupdundi] context and tadl will be passed to the invalid
extension handler, then we send the call to cofkeskupmysql] extension 1002
priorityl.

Here is a snippet from the Asterisk CLI>

regpbx1*CLI>
-- Executing Goto("SIP/1001-2c5d", "lookupldd®02|1")
-- Goto (lookuplocal,1002,1)
-- Executing ChanlsAvail("SIP/1001-2c5d", "SIPD2&IAX2/1002]s)") in new stack
-- Executing Goto("SIP/1001-2c5d", "lookupdud@02|1™) in new stack
-- Goto (lookupdundi,1002,1)
-- Called priviwqOGASYITGtBIjFtvGjuCw@10.10.122/1002
-- Call accepted by 10.10.10.122 (format ulaw)
-- Format for call is ulaw
-- 1AX2/10.10.10.122:4569-1 answered SIP/100%eR
-- Hungup 'lAX2/10.10.10.122:4569-1"'
== Spawn extension (lookupdundi, 1002, 1) exited-zero on 'SIP/1239-2c5d’
regpbx1*CLI>

Example 3: In this example, extension 1001 calls 1002. IButis say registration

server 2 just failed. We are going to look intdélsntor the extension and if present, we
will follow standard PBX function, and connect ttedl. But if the extension is not
present we will perform a DUNDI lookup within thiister and connect the call to the
appropriate server that has extension 1002 regiktelf DUNDI returns “extension not
found” then we will ask the MySQL server if it knevmow to contact the SIP Agent
directly. This is possible because the Asteris&liRene Architecture pulls SIP Agent
registration info from the database and also, wh&iP Agent registers to a PBX,
Asterisk then writes the “fullcontact” informatidoack to the database for that SIP Agent.
We can use this information to call the SIP Agargdatly if it is available.

In extension.conf, here is the dialplan logic usederform a MySQL lookup:

[lookupmysql]

include => invalid

exten =>_X.,1,MYSQL(Connect connid 10.10.10.11iem=@skdb password db)
exten => _X.,2,MYSQL(Query resultid ${connid} SELECfullcontact\ from\ sip\
where\ name=${EXTEN})

exten => _X.,3,MYSQL(Fetch fetchid ${resultid} varl

exten => X.,4,MYSQL(Clear ${resultid})

exten => X.,5,MYSQL(Disconnect ${connid})

exten => _X.,6,Gotolf($["${varl}" = "]?invalid,i, I5{EXTEN},8)

exten => X.,8,Set(direct=${varl:4})

exten => X.,9,Dial(SIP/${direct},15,r)

exten => _X.,10,Goto(sendtovm,${EXTEN},1)

exten => X.,11,Hangup

Here we first must connect to the MySQL databadhk thie correct authentication
information. Then we query the table “sip” for tadle field “fullcontact” where the
name is 1002. We fetch this info, then clear tlestlted” and disconnect from the
MySQL server.

(This is very important, you do not want to leagésnnections open, they will not
close until you disconnect or restart, not discating would eventually reach the
MySQL connection limitation and not allow any mdéwekups and possible crash.)

We use the “Gotolf” command, if we pulled data frdm “fullcontact” field and put that
data into a variable ${direct} but first we stripchharacters from the front of the data
because it is appended with “sip:”, then we cal $iP Agent directly. If there was no
data in the “fullcontact” field then the SIP Agerdver registered with the cluster, so we
send the call to the [invalid] context priority 1.

Since we are contacting the SIP Agent directlydeearot have any dial-plan logic
associated with the extension we are calling, somhe ring the device for 15 seconds,
then send the call to [sendtovm] context priority 1

Here is a snippet from the Asterisk CLI>

regpbx1*CLI>
-- Executing Goto("SIP/1001-3a46", "lookupld&@i02|1")
-- Goto (lookuplocal,1002,1)
-- Executing ChanlsAvail("SIP/1001-3a46", "SIB02&IAX2/1002|sj") in new stack
-- Executing Goto("SIP/1001-3a46", "lookupdyfa@D2|1") in new stack
-- Goto (lookupdundi,1002,1)
-- Sent into invalid extension '1002' in corntéookupdundi' on SIP/1001-3a46
-- Executing Goto("SIP/1001-3a46", "lookupmy&gD2|1") in new stack
-- Goto (lookupmysql,1002,1)

-- Executing MYSQL("SIP/1001-3a46", "Connechoal 10.10.10.110 asteriskdb
password db") in new stack

-- Executing MYSQL("SIP/1001-3a46", "Query régll SELECT fullcontact from
sip where name=1002") in new stack

-- Executing MYSQL("SIP/1001-3a46", "Fetch feit 2 varl") in new stack
Mar 29 18:29:47 WARNING[31837]: app_addon_sqgl_mysgi8 aMYSQL_fetch:
ast_ MYSQL_fetch: numFields=1

-- Executing MYSQL("SIP/1001-3a46", "Clear 2i)new stack

-- Executing MYSQL("SIP/1001-3a46", "Disconnécj in new stack

-- Executing Gotolf("SIP/1001-3a46", "0?inv4ij#:1002|8") in new stack

-- Goto (lookupmysql,1002,8)

-- Executing Set("SIP/1001-3a46", "direct=10QH1.0.10.63:5060") in new stack

-- Executing Dial("SIP/1001-3a46", "SIP/1002@1M10.63:5060|15|r") in new stack

-- Called 1002@10.10.10.63:5060

-- SIP/10.10.10.63:5060-32f2 is ringing

-- SIP/10.10.10.63:5060-32f2 answered SIP/18646

-- Attempting native bridge of SIP/1001-3a46l &1P/10.10.10.63:5060-32f2

== Spawn extension (lookupmysql, 1002, 9) exited-zero on 'SIP/1001-3a46'

regpbx1*CLI>

A Few Cautionary Notes

“ChanlsAvail” Usage

Why we don’t perform a “ChanlsAvail” command if vaave to dial the SIP Agent
directly. Some phones, like Cisco and Polycoml, agtept incoming extension request
and ring the extension as long as the phonelsitilks it is registered to a PBX. Hence if
the registration time is set to say, 5 minutethefregistration server crashes and there is
still 4 min 59 sec left on the registration timem the phone will acknowledge a SIP
request as available and accept a direct dialinDuhis condition, 5 minute window

mayx, if you use “ChanlsAvail’ command, the phond say, “yes, | am available, send
the call.”

But if the server crashed and the phone registratmes out, then the phone will realize
it is not registered and take that extension oavailable status, so the “ChanlsAvail”
command will get a false negative and not try &l the phone, but the phone is still
available for direct dial even if it is not registd. So in the dial plan, always dial the
phone and have a timeout to do something else dieen if the phone is off-line totally,
you still made an effort to contact, and then swedcall to voicemail or wherever. At
least the call was not falsely diverted when a calild have been established to the SIP
Agent.

SIP Agents Using Backup Registration Server

It is possible to have a SIP Agent registered toentloan 1 registration server. What
happens when a DUNDI request goes out in thistsitugs the call will be completed to
the first responder. So if extension 1002 is tegesl to registration server 1 and
registration server 2 and extension 1003, regidtereregistration server 3 calls for
extension 1002, then the call will complete tofih& server that responds to the DUNDiI
request.

This may seem like an ideal situation but it camaitfalls, mostly with PBX features
like call parking. Ideally you want all extensionghin the same office, persons who
would be parking calls and asking others to picktagpe registered to the same PBX,
otherwise a situation could arise where extensfiikegistered on registration server 1
parks a call for extension 1002 which is on registn server 2.

To prevent this, use caution with backup registratervers. As with the Cisco phone,
you can choose not to have a backup registratim@sbut a proxy server of last resort.
The phone will not register to the last resort groxt will pass outbound calls to it. If
the registration server fails, the phone can abithplete outbound calls and using
[lookupmysql] context as noted in example 3 abaveound calls can still be completed
to the SIP Agent.

Asterisk RealTime and MySQL

In diagram 1, | depicted 2 Ethernet segments, RealTme/MySQL exchanges and 1
for voice/DUNDI traffic. The reason is for scalktyiand to segment the traffic into
more controllable environments. Most server ctaashines come with 2 or more NIC’s
so why not use them. MySQL and RealTime is a eéatty environment to operate
voice in and several components in the dial pl&hae quick responses from the
MySQL database. When voice traffic is prioritizeatoss the switching network, the
database traffic can get held in buffers and gyesttend response time. In the testing
environment, 10ms lookups is fantastic. Add 10,0@§tomers to the cluster and you'll
be praying for that kind of lookup time, but youléver see it. You will get your best
database response times when segmenting the RedMy8QL function and the other
PBX and Voice functions.

Load Balancing Across the Registration Server Clusr

If the network is hosting a lot of non-contiguowsets, unassociated, like residential
customers, then a round robin or truer server-bo@dre method is deployed, then
balancing can be arbitrary and fairly straight farde When you have 10 users in
Company A, 50 users in Company B, 25 Users in Coipaand 5 users in Company D,
then it makes more sense to put Company A, C aad é&ne server and Company B on
another server to have some ability to offer comBBX features. In the event server B
crashes, the users will still have in and out ogllintil another server can be
reconfigured with server B’s IP address. For tkason and many others, several hot
standby servers should be deployed strategicatlyinvihe cluster.

